Предварительный анализ и обработка временных рядов экономических
показателей.
2) механическое выравнивание отдельных уровней временного ряда с использованием фактических значений соседних уровней.
Суть методов механического сглаживания заключается в следующем. Берется несколько первых уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выровненные значения уровней в середине интервала сглаживания. Далее интервал сглаживания сдвигается на один уровень ряда вправо, вычисляется следующее сглаженное значение и т. д.
Самым простым методом механического сглаживания является метод простой скользящей средней
.
Сначала для временного ряда
y1 , y2 , … , yn
определяется интервал сглаживания m(m<n) . Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нужно сохранить более мелкие колебания. При прочих равных условиях интервал сглаживания рекомендуется брать нечетным. Для первых m уровней временного ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление средней арифметической и т.д. Для вычисления сглаженных уровней ряда применяется формула:
, t > p, (16)
где (при нечетном m); для четных m формула (16) усложняется.
В результате такой процедуры получаются n – m + 1 сглаженных значений уровней ряда; при этом первые p и последние p уровней ряда теряются (не сглаживаются).
Другой недостаток метода в том, что он применим лишь для рядов, имеющих линейную тенденцию.
Метод взвешенной скользящей средней
отличается от предыдущего метода сглаживания тем, что уровни, входящие в интервал сглаживания, суммируются с разными весами. Это связано с тем, что аппроксимация ряда в пределах интервала сглаживания осуществляется с использованием полинома не первой степени, как в предыдущем случае, а степени, начиная со второй. Используется формула средней арифметической взвешенной:
, (17)
причем веса pt определяются с помощью метода наименьших квадратов. Эти веса рассчитаны для различных степеней аппроксимирующего полинома и различных интервалов сглаживания.
К этой же группе методов выравнивания временных рядов примыкает метод экспоненциального сглаживания
. Его особенность заключается в том, что в процедуре нахождения сглаженного уровня используются значения только предшествующих уровней ряда, взятые с определенным весом, причем вес наблюдения уменьшается по мере удаления его от момента времени, для которого определяется сглаженное значение уровня ряда. Если для исходного временного ряда
y1 , y2 , … , yn
соответствующие сглаженные значения уровней обозначить через St, t = 1, 2, ., n, то экспоненциальное сглаживание осуществляется по формуле:
(18)
где α - параметр сглаживания (0 < α < 1);
величина 1 - α называется коэффициентом дисконтирования.
Используя приведенное выше рекуррентное соотношение для всех уровней ряда, начиная с первого и кончая моментом времени t, можно получить, что экспоненциальная средняя, т.е. сглаженное данным методом значение уровня ряда, является взвешенной средней всех предшествующих уровней:
(19)
здесь S0— величина, характеризующая начальные условия.
Перейти на страницу:
1 2 3 4