Шпаргалка по исследованию операций
В верхней части формы слева фиксируется инфа из табл.раб. и сведения о расходе рес.на каждой операции, справа выбирается масштаб и строится сетка времени, охватывающая отрезок [0,5]. На сетке вертикальные линии обозначают ранние сроки наступления событий и под ними проставляют их NN. Затем на сетке времени в соответствующих строках строят раб.прог-м.
Для построения раб(i,j) на отрезке меж вертикальными отметками нач i конеч j событияв масштабе откладывают длительность задержки gi,j работы и времени её вып-я ti,j. Оставшаяся часть отрезка соответствует свободному резерву времени. При построении обозначают: задержку gi,j – симв.«ооо»; время выполнения раб ti,j – сплошной чертой (для ???); свободный резерв di,j – символ «+++». Фиктивная работа на графике обозначается T. По законченному графику строится диаграмма расхода ресурсов. На сетке диаграммы вертикальной линией обозначаются все начала и завершения работ. Эти отметки определяют границы интервалов, в течение которых расход рес.не изменятеся. Если обозначить через pi,j количество однор.рес., требуемого для выполнения операции (i,j) за время t , то его суммарный расход на одновременно выполняемые работы в «k»-ом интервале определяется по формуле Mk=Eijеk(сумма)pij и записывается в соответствующуу строку таблицы.
Множество одновременно выполняемых работ определяется по ленточно-сетевому графику как сумма работ, попадающих в границы интервала.
По ряду значений Mk оперделяется размах расхода ресурсов
dM=max{Mk}-min{Mk}=Mmax-Mmin
и масштаб диаграммы.
Значение (Mmax-Mmin) откладывается в принятом масштабе от уровня Mmin в границах соответствующих интервалов.
Первоначально строится календарный план при условии, что ни одна из работ не имеет задержек (gij =0; (ij)пренадлQ).
БИЛЕТ 11 ВОПРОС 2 Анализ чувствительности линейных моделей к изменению значений параметров системы ограничений.
При решении любой оптимиз. задачи важно проанализировать, насколько устойчиво оптимальное решение к изменению параметров задачи.
При решении задачи ЛП удельной стоимости, показатели (с1,с2,сj,сn ), входящие в функцию цели, уровень z рес bi и нормы их расхода aij принытя строго пост. На практике технико-экономические показатели (Сj и aij )определяются с некоторой погрешностью. Кроме того может меняться и уровень z рес bi
Т.о.,анализ чувствит-ти сводится к решениям задачи исслед-я оптимизаций, когда парам ci aij bj изм-ся в определённом диапазоне.
Разраба-ся спец методы реш-я задач, когда параметры модели (ci aij bj ) изменяются в некотором диапазоне. Эти задачи сост-ют парам программирование.
Различают прям и двойств задачи парам прогр-ия. В двойств задаче рассм случаи переменных запасов ресурсов. Модель двойств задачи парам прогр-я имеет вид:
Максимизирвоать ф-цию цели
Z=Enj=1CjXj ->max
При ограничениях
Yi=Enj=1aijXj<=Bi+tg (i=1,2,…m),
Дельта1<=t<=дельта2
Требуется разбить сегмент [дельта1,дельта2] на конеч число подынтервалов т.о., чтобы для всех знач парам t из каждого подынтервала мах знач ф-ции цели достигались в вершинах, определяемых одной и той же подсист системой ограничений, или достигались бы в вершинах, отличающихся лишь параллельным сдвигом определяющих их плоскостей. Решение двойств задачи позволяет указать пределы изм-я ресурсов, не влияющих на положение оптимума.