Шпаргалка по исследованию операций
БИЛЕТ 16 ВОПРОС 1 Этапы построения оптимизационных моделей.
1)Идентификация перем – исследования системы и выявление существ для решения задачи параметров, формулировка групп оптимиз и неуправляемых величин. Под существ параметром понимаются показатели сист, определяющие результат и эффекты оптимизации. В качестве оптимизации переменных берут те показатели, на которые может влиять руководитель оп-ии. Значения ост оцениваются статистич путём, прогнозируются или определяются заданиями вышестоящих организаций и включаются в модель в виде числовых параметров.
2)Определение системы ограничений, которые связывают оптимиз величины, парам модели с гранич условием операции, заданными постановкой задачи и отражают внутренние условия проведения операции.
3) Формирование функции цели (ф-ция, аргументами которой являются допустимые решения, а значения – числа, характеризующие меру достижения поставленной цели при различных аргументах).
БИЛЕТ 16 ВОПРОС 2 Графическая интерпритация случая несовместимости системы ограничений.
Случай несовместимости возникает тогда, когда общей области пересекающихся полуплоскостей или оно попадает в отриц. В этом случае гворят, что множество решений пустое.
БИЛЕТ 17 ВОПРОС 1 Примеры моделей задач планирования производства.
Небольшая фабрика имеет 2 вида красок: для внутр (I) и наружн(E) работ.
Продукция обоих видов поступает в опт продажу. Для производства используется 2 компонента: A и В. Макс возможно этих компонентов 6 и 8т соответственно. Расходы компонентов Аи В на производство 1т:
Продукт |
Расход в т |
Е |
I |
А |
1 |
2 |
В |
2 |
1 |
Изучение рынка показало, что суточный спрос на краску I никогда не превышал на краску Е более чем на 1т. Кроме того, спрос на краску I никогда не превышал 2т/сут. Опт цены красок: E – 3уе за 1т, I – 2уе за 1т. Какое кол-во краски каждого вида фабрика должна произв ежесуточно.
Xi – объём производства краски I
Хе – объем производства краски Е
2Хi+1Хе<=6 – расход компонента А
1Хi+2Хе<=8 – расход компонента В
Хi<=2
Хi-Хе<=1
2Хi+3Хе -> мах
БИЛЕТ 17 ВОПРОС 2 Графический метод решения задачи ЛП.
1)В принятой системе координат построить Ур-я всех ограничений, суммы которых даст многоугольник (многогор) ограничений.
2)Построить уравнение целевой функции, проходящее через нач корд.
3)Определить направление роста (убывания) целевой функции, перемещая прямую (пл-ть), соотв-щую целевой ф-ции, параллельно самой себе.
4)В соответствии с целью ЗЛП и направлением роста (убывания) целевой функции найти точку касания этой прямой (пл-ти) с многоугольником (многогр) ограничений – вершину многоуг-ка, имеющую мах отклонение от прямой (пл-ти), проходящей через начало корд.