Прогнозирование экономических показателей.
На практике при предварительном выборе отбирают обычно две-три кривые роста для дальнейшего исследования и построения трендовой модели данного временного ряда.
Методы определения параметров отобранных кривых роста.
Параметры полиномиальных кривых оцениваются, как правило, методом наименьших квадратов, суть которого заключается в том, чтобы сумма квадратов отклонений фактических уровней ряда от соответствующих выровненных по кривой роста значений была наименьшей. Этот метод приводит к системе так называемых нормальных уравнений для определения неизвестных параметров отобранных кривых.
Для полинома первой степени
система нормальных уравнений имеет вид:
,
;
где знак суммирования распространяется на все моменты наблюдения (все уровни) исходного временного ряда. Аналогичная система для полинома второй степени
имеет вид
,
, (48)
;
и т.д.
Параметры экспоненциальных и S-образных кривых находятся более сложными методами. Для простой экспоненты предварительно логарифмируют выражение по некоторому основанию (например, десятичному или натуральному):
т.е. для логарифма функции получают линейное выражение, а затем для неизвестных параметров log a и log b составляют на основе метода наименьших квадратов систему нормальных уравнений, аналогичную системе для полинома первой степени. Решая эту систему, находят логарифмы параметров, а затем и сами параметры модели.
При определении параметров кривых роста, имеющих асимптоты (модифицированная экспонента, кривая Гомперца, логистическая кривая), различают два случая. Если значение асимптоты k известно заранее, то путем несложной модификации формулы и последующего логарифмирования определение параметров сводят к решению системы нормальных уравнений, неизвестными которой являются логарифмы параметров кривой.
Если значение асимптоты заранее неизвестно, то для нахождения параметров указанных выше кривых роста используются приближенные методы: метод трех точек, метод трех сумм и др. Таким образом, при моделировании экономической динамики, заданной временным рядом, путем сглаживания исходного ряда, определения наличия тренда, отбора одной или нескольких кривых роста и определения их параметров в случае наличия тренда получают одну или несколько трендовых моделей для исходного временного ряда.
Определение адекватности трендовой модели.
Независимо от вида и способа построения экономико-математической модели вопрос о возможности ее применения в целях анализа и прогнозирования экономического явления может быть решен только после установления адекватности, т.е. соответствия модели исследуемому процессу или объекту. При моделировании имеется в виду адекватность не вообще, а по тем свойствам модели, которые считаются существенными для исследования.
Трендовая модель конкретного временного ряда yt считается адекватной, если правильно отражает систематические компоненты временного ряда. Это требование эквивалентно требованию, чтобы остаточная компонента (t = 1, 2, ., n) удовлетворяла свойствам случайной компоненты временного ряда: случайность колебаний уровней остаточной последовательности, соответствие распределения случайной компоненты нормальному закону распределения, равенство математического ожидания случайной компоненты нулю, независимость значений уровней случайной компоненты.