Прогнозирование экономических показателей.

- среднее арифметическое значение уровней ряда.

На основании указанных показателей можно сделать выбор из нескольких адекватных трендовых моделей экономической динамики наиболее точной, хотя может встретиться случай, когда по некоторому показателю более точна одна модель, а по другому - другая.

Данные показатели точности моделей рассчитываются на основе всех уровней временного ряда и поэтому отражают лишь точность аппроксимации. Для оценки прогнозных свойств модели целесообразно использовать так называемый ретроспективный прогноз - подход, основанный на выделении участка из ряда последних уровней исходного временного ряда в количестве, допустим, n2 уровней в качестве проверочного, а саму трендовую модель в этом случае следует строить по первым точкам, количество которых будет равно n1 = n – n2. Тогда для расчета показателей точности модели по ретроспективному прогнозу применяются те же формулы, но суммирование в них будет вестись не по всем наблюдениям, а лишь по последним n2 наблюдениям. Например, формула для среднего квадратического отклонения

будет иметь вид:

, (66)

где - значения уровней ряда по модели, построенной для первых n1 уровней.

Оценивание прогнозных свойств модели на ретроспективном участке весьма полезно, особенно при сопоставлении различных моделей прогнозирования из числа адекватных. Однако оценки ретропрогноза - лишь приближенная мера точности прогноза и модели в целом, так как прогноз на период упреждения делается по модели, построенной по всем уровням ряда.

Стандартная (средняя квадратическая)

ошибка оценки прогнозируемого показателя определяется по формуле:

, (67)

где yt — фактическое значение уровня временного ряда для времени t;

- расчетная оценка соответствующего показателя по модели (например, по уравнению кривой роста);

n - количество уровней в исходном ряду;

k - число параметров модели.

В случае прямолинейного тренда для расчета доверительного интервала можно использовать аналогичную формулу для парной регрессии, таким образом доверительный интервал прогноза

Uy в этом случае будет иметь вид

, (68)

где L - период упреждения;

- точечный прогноз по модели на (n+L)-й момент времени;

n - количество наблюдений во временном ряду;

- стандартная ошибка оценки прогнозируемого показателя, рассчитанная по формуле (62) для числа параметров модели, равного двум;

tα - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2.

Если выражение

(69)

обозначить через К, то формула для доверительного интервала примет вид

. (70)

Значения величины К для оценки доверительных интервалов прогноза относительно линейного тренда табулированы.

Формула для расчета доверительных интервалов прогноза относительно тренда, имеющего вид полинома второго или третьего порядка, выглядит следующим образом:

. (71)

Аналогично вычисляются доверительные интервалы для экспоненциальной кривой роста, а также для кривых роста, имеющих асимптоту (модифицированная экспонента, кривая Гомперца, логистическая кривая), если значение асимптоты известно.

Таким образом, формулы расчета доверительного интервала для трендовых моделей разного класса различны, но каждая из них отражает динамический аспект прогнозирования, т.е. увеличение неопределенности прогнозируемого процесса с ростом периода упреждения проявляется в постоянном расширении доверительного интервала.

Верификация прогноза.

При экстраполяционном прогнозировании экономической динамики с использованием трендовых моделей весьма важным является заключительный этап — верификация прогноза. Верификация любых дескриптивных моделей, к которым относятся трендовые модели, сводится к сопоставлению расчетных результатов по модели с соответствующими данными действительности — массовыми фактами и закономерностями экономического развития. Верификация прогнозной модели представляет собой совокупность критериев, способов и процедур, позволяющих на основе многостороннего анализа оценивать качество получаемого прогноза. Однако чаще всего на этапе верификации в большей степени осуществляется оценка метода прогнозирования, с помощью которого был получен результат, чем оценка качества самого результата. Это связано с тем, что до сих пор не найдено эффективного подхода к оценке качества прогноза до его реализации.

Перейти на страницу: 2 3 4 5 6 7 8 9

 

Стоимость денег

showОценивая стоимость денег, невольно возникает вопрос: “Что придает 20-долларовой банкноте или 100-долларовому чековому счету именно эту стоимость?

Денежная система

show Важнейшими элементами денежной системы являются: национальная денежная единица, масштаб цен, система эмиссии денег, формы денег, валютный паритет...

Виды налогов

showВся совокупность законодательно установленных налогов и сборов подразделяется на группы по определенным критериям, признакам, особым свойствам.

Валютный рынок

showВалютный рынок играет значительную роль в обеспечении взаимоействия различных составляющих мировых финансовых рынков.