Сетевое моделирование при планировании. Задача о коммивояжере...
Исходная матрица
Решение
x3 = 1
x5 = 1
x7 = 1
x8 = 0
x11 = 1
Это означает, что на графике остаются только пути, соответствующие переменным х3, х5, х7, х11 (1 4, 2 3, 3 1, 4 2). Функционал равен 12, т. е. время пути будет равно 12 единицам. График при этом выглядит следующим образом.
Задание №3
Тема: Графы
Задача о максимальном потоке
Имеется трубопроводная сеть с заданной Sij пропускной способностью каждого участка из i-го узла в j-й узел и мощностью насосной станции, расположенной в узле. Необходимо рассчитать максимальную пропускную способность сети из начального узла в конечный узел.
aисток aсток
Пропускная способность Sij , тыс. тонн
S12 = 4
S13 = 7
S14 = 8
S23 = 3
S25 = 5
S34 = 8
S35 = 9
S45 = 9
Математическая модель
Обозначим за х1, 2, …, 8 перевозки по маршрутам 12, 13, 14, 23, 25, 34, 35, 45 соответственно, а за х9 – пропускную способность конечного узла сети.
Сумма входящих в каждый узел потоков равна сумме выходящих, причем интенсивность каждого потока не может превышать пропускную способность своего участка сети. Поэтому система условий-ограничений выглядит следующим образом.
х9 - х1 – х2 – х3 = 0 (1)
х1 – х4 – х5 = 0 (2)
х2 + х4 – х6 – х7 = 0 (3)
х3 + х6 – х8 = 0 (4)
х5 + х7 + х8 – х9 = 0 (5)
х1 £ 4 (6)
х2 £ 7 (7)
х3 £ 8 (8)
х4 £ 3 (9)
х5 £ 5 (10)
х6 £ 8 (11)
х7 £ 9 (12)
х8 £ 9 (13)
Функция цели: х9 max
Таблица 3.1
Исходная матрица
№ |
х1 |
х2 |
х3 |
х4 |
х5 |
х6 |
х7 |
х8 |
х9 |
Знак |
Св.чл. |
1 |
-1 |
-1 |
-1 |
0 |
0 |
0 |
0 |
0 |
1 |
= |
0 |
2 |
1 |
0 |
0 |
-1 |
-1 |
0 |
0 |
0 |
0 |
= |
0 |
3 |
0 |
1 |
0 |
1 |
0 |
-1 |
-1 |
0 |
0 |
= |
0 |
4 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
-1 |
0 |
= |
0 |
5 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
1 |
-1 |
= |
0 |
6 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
£ |
4 |
7 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
£ |
7 |
8 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
£ |
8 |
9 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
£ |
3 |
10 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
£ |
5 |
11 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
£ |
8 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
£ |
9 |
13 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
£ |
9 |
Ф. ц. |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
max |
|